Regine Humanics Foundation Ltd: For A Better Human Condition For All Humanity Across Mother Earth
The Arkive
|| Year Delta: London: Friday: November 02: 2018: We Keep On Walking On The Path of Humanics ||
Editorial Page Epigenomics Beauroblubellogenics Astrophysics Palaeontology Jurisprudence Psychology The Earth The Moon The Sunnara The Humanion Team
The Elleesium The Humanion Hearteogenics Archaeology Anthropology Geology Molecular Biology Marine World Microbial World Universana GREEN-K Hope
Elsinki The Universe Cosmology Astronomy Matter World Seismology Theatre The Arctic The Antarctic The Milky Way The Humanion Web Map

I Humanics Spring Festival 2019: April 06 in London

I Regine Humanics Annual Lecture 2019: Whither to Homo Sapiens: Delivered by Dr J Everet Green: April 06 in London


VII London Poetry Festival 2019: St Matthews at Elephant and Castle: Meadow Row: London SE1 6RG: October 14-15

Classified Adverts Holidays and Attractions Adverts Events and Festivals Adverts Employments and Opportunities Adverts Public Service Adverts Products and Services Adverts
First Published: September 24: 2015
The Humanion



Microbial World

Spirulina: A microscope image of Arthrospira bacteria that are known as Spirulina.Spirulina has been harvested for food in South America and Africa for centuries. It turns carbon dioxide into oxygen, multiplies rapidly and can also be eaten as a delicious protein-rich astronaut meal. ESA astronaut Samantha Cristoforetti ate the first food containing spirulina in space. Image: ESA:NASA













Microbial World

The Humanion uses Machine Processed Programming:MPP for Machine or Artificial Intelligence and Programmed Algorithmic Machination:PAM for Machine Learning, refusing the very concepts that machines can have intelligence and that they are, therefore, capable to learn. Likewise, The Humanion does not use the terms, self-driven or self-driving or autonomous vehicles for machines are not and can not be deemed to be having 'self', that absolutely applies to humans and autonomy applies to humans as individuals and as groups, societies, peoples, nations etc and can not be applied to machines. Therefore, Auto-driven is the term we use for Self-driven or Self-driving or autonomous vehicles etc. This relates to profound, vital and fundamental issues and we must be careful as to how we use terminology, that, albeit, inadvertently, dehumanises humanity.

A Hive for the Honey and a Vaccine for the Honey Bees: That’s What A Bee Calls PrimeBEE




|| November 01: 2018: University of Helsinki News: Elina Raukko Writing || ά. An easily administered edible vaccine could keep the pollinating bees safe from bacterial diseases and give invaluable support for food production worldwide. Food and pollination services are important for everyone: humans, production animals and wildlife alike. Inventing something, that guards against pollinator losses will have a tremendous impact. PrimeBEE is the first-ever vaccine for honey bees and other pollinators.

It fights severe microbial diseases, that can be detrimental to pollinator communities. The invention is the fruit of research carried out by two scientists in the University of Helsinki, Dalial Freitak and Heli Salmela. The basis of the innovation is quite simple. When the queen bee eats something with pathogens in it, the pathogen signature molecules are bound by vitellogenin. Vitellogenin, then, carries these signature molecules into the queen’s eggs, where they work as inducers for future immune responses.

Before this, no-one had thought that insect vaccination could be possible at all. That is because the insect immune system, although, rather similar to the mammalian system, lacks one of the central mechanisms for immunological memory, antibodies. "Now we've discovered the mechanism to show that you can actually vaccinate them. You can transfer a signal from one generation to another." Ms Dalial Freitak, Researcher says.

Ms Dalial Freitak has been working with insects and the immune system throughout her career. Starting with moths, she noticed that, if, the parental generation is exposed to certain bacteria via their food, their offspring show elevated immune responses.

"So, they could actually convey something by eating. I just didn't know what the mechanism was. At the time, as I started my post-doc work in Helsinki, I met with Heli Salmela, who was working on honeybees and a protein, called, vitellogenin. I heard her talk and I was like: OK, I could make a bet that it is your protein, that takes my signal from one generation to another. We started to collaborate and that was actually the beginning of PrimeBEE." Ms Dalial Freitak says.

PrimeBEE's first aim is to develop a vaccine against American foulbrood, a bacterial disease, caused by the spore-forming Paenibacillus larvae ssp. larvae. American foulbrood is the most widespread and destructive of the bee brood diseases.  

"We hope that we can, also, develop a vaccination against other infections, such as, European foulbrood and fungal diseases. We have already started initial tests. The plan is to be able to vaccinate against any microbe."

At the same time as the vaccine’s safety is being tested in the laboratory, the project is being accelerated towards launching a business. Ms Sara Kangaspeska, the Head of Innovation at Helsinki Innovation Services HIS, has been involved with the project right from the start.

"Commercialisation has been a target for the project from the beginning. It all started when Dalial and Heli contacted us. They first filed an invention disclosure to us describing the key findings of the research. They, then, met with us to discuss the case in detail and, since then, the University has proceeded towards filing a patent application, that reached the national phase in January 2018.”

A big step forward was to apply for dedicated commercialisation funding from Business Finland, a process, which is co-ordinated and supported by HIS. HIS assigns a case owner for each innovation or commercialisation project, who guides the project from A to Z and works hands-on with the researcher team.

“HIS core activities are to identify and support commercialisation opportunities stemming from the University of Helsinki research. PrimeBEE is a great example of an innovation maturing towards a true commercial seed ready to be spun-out from the University soon. It has been inspiring and rewarding to work together with the researchers towards a common goal.” says Ms Sara Kangaspeska.

"We need to help honey bees, absolutely. Even, improving their life a little would have a big effect on the global scale. Of course, the honeybees have many other problems as well: pesticides, habitat loss and so on, but diseases come hand in hand with these life-quality problems. If, we can help honey bees to be healthier and, if, we can save even a small part of the bee population with this invention, I think, we have done our good deed and saved the world a little bit." Ms Dalial Freitak says. :::ω.

|| Readmore  || 011118 || Up || 







Breast Feeding Protects Infants From Antibiotic Resistant Bacteria



|| October 14: 2018: University of Helsinki News: Anu Partanen Writing || ά. A new study shows that babies, that are breastfed for at least six months, have less antibiotic-resistant bacteria in their gut compared with infants breastfed for a shorter time. In addition, antibiotic use by mothers increases the number of antibiotic-resistant bacteria in infants. Bacteria resistant to antibiotics are everywhere. They are present in the human gut, regardless of whether a person has taken antibiotics. They are transmitted between individuals in the same way as bacteria, viruses and other micro-organisms usually are: through, for example, direct contact and in food.

A recent study completed at the University of Helsinki investigated the amount and quality of bacteria resistant to antibiotics in breast milk and the gut of mother-infant pairs, resulting in three findings. First, infants, who were breastfed for at least six months had a smaller number of resistant bacteria in their gut than babies, who were breastfed for a shorter period or not at all. In other words, breastfeeding seemed to protect infants from such bacteria. Second, antibiotic treatment of mothers during delivery increased the amount of antibiotic-resistant bacteria in the infant gut. This effect was still noticeable six months after delivery and the treatment.

The third finding, meanwhile, was that breast milk, also, contains bacteria resistant to antibiotics and that the mother is likely to pass these bacteria on to the child through milk. Nevertheless, breastfeeding reduced the number of resistant bacteria in the infant gut, an indication of the benefits of breastfeeding for infants. The findings were published in the journal Nature Communications.

The increasingly frequent occurrence of bacteria resistant to antibiotics is among the greatest global threats to human health. According to estimates by previous research, bacteria and other micro-organisms resistant to antibiotics and other drugs will, by 2050, cause more deaths than cancer, since infections can no longer be effectively treated.

Microbiologist Katariina Pärnänen of the University of Helsinki’s Faculty of Agriculture and Forestry investigated with her colleagues the breast milk and faecal matter of 16 mother-infant pairs. The DNA in the milk and faeces were sequenced or their genetic code decoded. However, the study did not focus on the mother’s DNA found in milk. Rather, the researchers focused on the bacterial DNA and genes in the milk. They created the most extensive DNA sequence library of breast milk thus far.

“Such studies were practically impossible only a few years ago. For instance, the laboratory techniques required for processing DNA into sequenceable form have advanced to the extent that the amount of source material needed is today a thousand times smaller than, say, five years ago.” Dr Pärnänen.

The specific focus of the study was the number of antibiotic resistance genes:ARGs. Such genes make bacteria resistant to certain antibiotics and they are, often, able to transfer between bacteria. Individual bacteria can have several antibiotic resistance genes, making them resistant to more than one antibiotic. The study demonstrated, for the first time, that breast milk, indeed, contains a significant number of genes, that provide antibiotic resistance for bacteria and that these genes, as well as, their host bacteria, are most likely transmitted to infants in the milk.

Mothers transmit antibiotic-resistant bacteria residing in their own gut to their progeny in other ways as well, for example, through direct contact. Yet, only some of the resistant bacteria found in infants originated in their mothers. The rest were likely from the environment and other individuals.

The study does, however, support the notion that breastfeeding overall is beneficial for infants. Although, breast milk contains bacteria resistant to antibiotics, sugars in the milk provide sustenance to beneficial infant gut bacteria, such as, Bifidobacteria, which are used as probiotics.

Breast milk helps such useful bacteria gain ground from resistant pathogens, which is, probably, why infants, who were nursed for at least six months have less antibiotic-resistant bacteria in their gut compared to infants, who were nursed for a shorter period.

“As a general rule, it could be said that all breastfeeding is for the better.” says Dr Pärnänen. “The positive effect of breastfeeding was identifiable, also, in infants, who were given formula in addition to breast milk. Partial breastfeeding already seemed to reduce the quantity of bacteria resistant to antibiotics. Another finding was that nursing should be continued for at least the first six months of a child’s life or even longer. We have already known that breastfeeding is all in all healthy and good for the baby but we now discovered that it, also, reduces the number of bacteria resistant to antibiotics.”

Women can be prescribed an intravenous antibiotic treatment during labour for various reasons, for example, if, they have tested positive for Streptococcus, a bacterium hazardous to infants. In such cases, antibiotic treatment is intended to prevent the transmission of bacteria living in the birth canal to the infant during delivery.

Antibiotic treatment can, also, be used, if, the mother’s waters have broken long before labour begins or, if, potential infection is otherwise suspected. However, the study indicated that the antibiotic treatment of the mother increases the number of bacteria resistant to antibiotics in the infant’s gut.

While the study did not demonstrate why this happens, according to one theory, the bacteria, that first reach the infant gut gain a head start. Since antibiotics administered to the mother eliminate all bacteria except those resistant to the drug, in such deliveries the mother is likely to pass mainly resistant bacteria on to her child.

“We can not advise that mothers should not be given antibiotics during delivery.” says Dr Pärnänen. “The consequences of infection for both mother and infant are potentially serious. What we can state is our findings and physicians can use them to consider whether practices should be changed or not.”

However, antibiotic treatment administered during delivery is only one of all the antibiotic courses taken by mothers at some point in their life, that, ma,  impact the gut microbiota of infants. The bacterial flora in our gut changes every time we take antibiotics. Antibiotics kill both good and bad bacteria, leaving alive only those bacteria, that are resistant to the antibiotic in question. These bacteria, may, gain a permanent foothold in the gut, even, though, most of the other bacteria will return soon after the antibiotic treatment as well.

Since the mother transmits bacteria resistant to antibiotics to the infant, all of the antibiotic courses taken by the mother in her life, may, also, affect the bacterial flora of the infant’s gut and the prevalence of resistant bacteria in the gut. All resistant bacteria do not cause diseases and, thus, do not, as such, harm their carriers. In suitable conditions, however, such bacteria can either induce the onset of a disease or transfer the gene, that provides antibiotic resistance to another bacterial pathogen.

Because such bacteria can not be killed with antibiotics and because the immune system of infants is weak, infections caused by resistant bacteria can be fatal to infants. In Finland, where Dr Pärnänen is based, babies die of such infections only rarely. Yet, prior studies show that, globally, more than 200,000 new-borns die annually of infections, caused by antibiotic-resistant bacteria, that have advanced to the stage of sepsis.

“Babies inherit every facet of antibiotic misuse since the discovery of antibiotics. The amount of bacteria resistant to antibiotics in the infant gut is alarming, since infants are, also, otherwise, vulnerable to diseases. Babies are more likely to suffer from this than adults, even, if, the babies have never been given antibiotics.”

Health problems originating in resistant bacteria are accrued by those with weak immunity. Infants and the elderly are in particular danger. Since the defence system of infants is yet to reach the efficiency of adult immunity, small children often need antibiotics to recover from diseases, which makes antibiotic inefficiency more dangerous to children.

The study was carried out in co-operation between the University of Helsinki, the University of Turku, the Turku University Hospital and the University of Gothenburg.

Dr Katariina Pärnänen will discuss the topic during One Health Finland’s evening on antibiotic resistance on  November 02 at the University of Helsinki Think Corner. The World Antibiotics Awareness Week runs from November 12 to 18.

The Paper: Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements:::ω.

|| Readmore  || 141018 || Up || 








Here You Go Virtanen With Your Own Bacterium: And What Is It Called The Humanion: Well It Is Acidipropionibacterium Virtanenii: That’s a Grand Name for a Bacterium: Well They Would Say It Is All Your Fault Because You Discovered It: Well I Can Not Do Much About That Now Can I




|| September 17: 2018: University of Helsinki News || ά. Artturi Ilmari Virtanen narrowly missed out on species naming for his original work in the 1920s. Now he has got Acidipropionibacterium Virtanenii named after him. Virtanen is best known for his work on fodder preservation method, which earned him a Nobel Prize award in Chemistry in 1945. What is rarely mentioned in his biographies, is his pioneering research on Propionic Acid Bacteria:PAB.

PAB, named collectively for their production of propionic acid as the main end product of fermentation, which includes several species of important bacteria: from the vitamin B12-producer and emerging probiotic Propionibacterium Freudenreichii, through industrial producer of propionic acid Acidipropionibacterium Acidipropionici, to opportunistic human pathogen Cutibacterium Acnes.The first reports of PAB being isolated and described came at the very beginning of the 20th century. In the early 1920s, Virtanen, also, worked on characterisation of strains he isolated from the brown spots of Finnish Emmental-type cheeses.

However, it was not until 1928 that a breakthrough in PAB research came with the doctoral thesis of Cornelius Bernardus van Niel from the Delft University of Technology, where systematic classification and species naming took place. To honour the researchers, who either first isolated or contributed to the understanding of the biology of PAB, van Niel named the species after the scientists, who discovered them, among them Eduard von Freudenreich:Freudenreichii, Sigurd Orla-Jensen:Jensenii, Gerda Troili Petersson:Peterssonii, James M. Sherman:Sshermanii and J. Thön:Thoenii.

However, Virtanen missed out on a species name, as he himself believed that his strains belonged to already described and named Acidipropionibacterium Thoenii. In the University of Helsinki, during sequencing project of PAB isolated from various environments, researchers worked with a PAB strain isolated from Finnish malted barley, which displayed similar pigmentation and branching cell shape to those described by Virtanen. As it turned out the, the strain was sufficiently genetically different from A. Thoenii and its known relatives to form a new species.

"While we have no way of knowing whether the novel species isolated in Finland could be, in fact, the species Virtanen described in his work, we still decided to name the novel species Acidipropionibacterium Virtanenii in his honour and to ensure Virtanen’s name is recognised among those, who contributed to the pioneering PAB research." says Dr Paulina Deptula, Postdoctoral Researcher in the Faculty of Agriculture and Forestry.

The Paper: Paulina Deptula,  Olli-Pekka Smolander,  Pia Laine,  Richard J. Roberts,  Minnamari Edelmann,  Petri Peltola,  Vieno Piironen,  Lars Paulin,  Erna Storgårds,  Kirsi Savijoki,  Arja Laitila,  Petri Auvinen, Pekka Varmanen. Acidipropionibacterium virtanenii sp. nov. isolated from malted barley. International Journal of Systematic and Evolutionary

Image: Paulina Deptula:University of Helsinki:::ω.

|| Readmore  || 180918 || Up || 







We Alter Together As We Evolve Together: The Duality That It Is



|| September 12: 2018: University of Exeter News || ά. A study of a songbird and a bacterium, that infects it has showed how species in conflict evolve in response to each other. University of Exeter researchers found North American house finches developed greater resistance to a bacterial pathogen, Mycoplasma Gallisepticum, thereby, pushing the pathogen to become more virulent. This process is known as ‘host-pathogen co-evolution’, which is believed to play a key role in evolution but until now evidence for it has been scarce.

“Our results show how these competitors respond to each other over time.” said Dr Camille Bonneaud, of the Centre for Ecology and Conservation on the University of Exeter’s Penryn Campus in Cornwall. “As the finches evolve better resistance to the pathogen, the pathogen becomes more potent to overcome these defences. It is widely assumed that animals, including, humans, co-evolve with their infectious pathogens and become ever more resistant but, in fact, most direct evidence for this comes from studies of bacteria and their viral pathogens.

In this study we show how a pathogen can shape evolution in a vertebrate and how this has consequences for the pathogen.” The research, supported by Auburn University, Alabama and Arizona State University, was made possible by differences in finch populations in these two US states.

House finches in Arizona have not been exposed to Mycoplasma Gallisepticum, while those in Alabama have been exposed to it for over 20 years. Researchers found that exposure to the pathogen led to eye swelling in birds from both states but that resistant Alabama birds were three times less likely to show symptoms, that would lead to death in the wild.

Similarly, the pathogen evolved to become better able to infect and transmit as the birds became more resistant. The findings have implications for our knowledge of diseases that affect humans.

Dr Bonneaud said, “The Plague and more recently the pandemic of HIV are sobering reminders of the impacts that emerging infectious diseases can have on us. We know that we can see the signature of such impacts on our genome.

This study provides a direct demonstration that these outbreaks can shape our evolution and that how we respond will, in turn, shape the evolution of our infectious pathogens.” 

The Paper: Published in the journal Current Biology: Rapid antagonistic coevolution in an emerging pathogen and its vertebrate host :::ω.

|| Readmore  || 130918 || Up || 







Eco-Friendly Water Treatment Works Best with Experienced Bacterial Flora



|| May 14: 2018: Lund University News || ά. Sustainable, biological filters, called, slow sand filters, have been used to filter drinking water since the 1800s. They don’t use any chemicals, create no waste and use very little energy. However, technologies, that meet modern requirements for control, monitoring and time-efficiency have become popular, while biological water treatment has been less favoured, since little has been understood about how it works. New research from Lund University in Sweden shows that not only are the older filters more efficient cleaners, they could be making a comeback soon with the help of new technology.

Older sand filters are more effective than new ones, a unique field study at a water treatment facility in southern Sweden shows. This is because the old filters have had the time to develop a specific ecosystem of hungry bacteria, that purify the water. The water is cleaned not only by mechanical filtering by the grains of sand, but by considerably smaller helpers as well. The fact that sand filters contain micro-organisms was, already, known. However, it was believed that sand filters helped to reduce the number of bacteria, which is not the case. “Sand filtration helps change the composition of the bacteria for the better. The bacteria deep in the sand filters can remove harmful bacteria, viruses, parasites and other unpleasant substances.

For example, the old sand beds, always,  filtered out unwanted E. coli bacteria, something, which the new sand filters were not, always, able to do.” says Ms Catherine Paul, Researcher in Water Resources Engineering and Applied Microbiology at Lund University. Not only do older filters appear to be more effective, the bacteria between different filters vary. The development of certain micro-organisms depends on the type of sand originally used as well as the 'food' they receive, that is, what kind of dirt is in the water. Consequently, the bacterial flora of the purified drinking water is a reflection of the bacteria in the specific sand filter it has passed through.

The study suggests that, much like a sourdough bread starter, new sand filters can benefit from the addition of sand 'starter', made of bacteria and sand from an older sand filter.

“Just as we increasingly talk about the importance of our intestinal flora for our well-being, we should, also, start talking about our 'sand flora'. The right flora keeps harmful substances out of our drinking water, so it is important to our health. It impacts the bacterial flora in our tap water and so far we know very little about how that can affect us.” says Ms Catherine Paul.

A technology for monitoring slow sand filters, flow cytometry, means we can now understand the micro-organisms in sand filters better. Like other drinking water technologies, we can now begin to fulfil certain criteria for slow sand filters, such as, short response times and alert systems better, the study shows.

This new understanding of microbiology could give the old method a boost and since it can, also, help newer technologies perform better, the sand filters can be a sustainable boost to drinking water treatment.

Key collaboration partners: Sydvatten and Sweden Water Research. The study was funded by the Swedish Research Council.

The Paper: Monitoring biofilm function in new and matured full-scale slow sand filters using flow cytometric histogram image comparison:CHIC: Science Direct
::: ω.

|| Readmore || ‽: 150518 || Up ||







It's a Virus-Life: You Know Not Where We Have Been and How We are Back: It's Full of Hazards and All Hailings and All Fallings That You Humans Can Not Understand



|| February 19: 2017: University of British Columbia News || ά.  An astonishing number of viruses are circulating around the Earth’s atmosphere and falling from it, according to new research from scientists in Canada, Spain and the U.S. But the question is how do they end up being up there in the first place? Well, the study will answer this question as it marks the first time scientists have quantified the viruses being swept up from the Earth’s surface into the free troposphere, that layer of atmosphere beyond Earth’s weather systems but below the stratosphere, where jet airplanes fly. The viruses can be carried thousands of kilometres there before being deposited back onto the Earth’s surface.

“Every day, more than 800 million viruses are deposited per square metre above the planetary boundary layer, that’s 25 viruses for each person in Canada.” said University of British Columbia Virologist Mr Curtis Suttle, one of the Senior Authors of a paper in the International Society for Microbial Ecology Journal. The findings, may, explain why genetically identical viruses are often found in very different environments around the globe. “Roughly 20 years ago we began finding genetically similar viruses occurring in very different environments around the globe.” says Mr Suttle. “This preponderance of long-residence viruses travelling the atmosphere likely explains why it’s quite conceivable to have a virus swept up into the atmosphere on one continent and deposited on another.”

Bacteria and viruses are swept up in the atmosphere in small particles from soil dust and sea spray. Mr Suttle and colleagues at the University of Granada and San Diego State University wanted to know how much of that material is carried up above the atmospheric boundary layer above 2,500 to 3,000 metres. At that altitude, particles are subject to long-range transport unlike particles lower in the atmosphere.

Using platform sites high in Spain’s Sierra Nevada Mountains, the researchers found billions of viruses and tens of millions of bacteria are being deposited per square metre per day. The deposition rates for viruses were nine to 461 times greater than the rates for bacteria.

“Bacteria and viruses are, typically, deposited back to Earth via rain events and Saharan dust intrusions. However, the rain was less efficient removing viruses from the atmosphere.” said Author and Microbial Ecologist Isabel Reche from the University of Granada.

The researchers, also, found the majority of the viruses carried signatures, indicating, they had been swept up into the air from sea spray. The viruses tend to hitch rides on smaller, lighter, organic particles suspended in air and gas, meaning they can stay aloft in the atmosphere longer.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore   ||

|| ‽: 190218  ||

||    Up   ||






A Scientific Text on Bacterial Nepotism


|| October 29: 2017: University of Exeter News || ά. Natural selection quickly turns a melting pot of micro-organisms into a highly efficient community, new research shows. Scientists at the University of Exeter mixed together ten different methane-producing communities, populations of hundreds of microbial species, mainly, bacteria. Some of those communities were thriving, when grown on their own and some were performing poorly but when mixed together, samples containing all ten communities quickly started producing as much methane as the best of the ten.

Microbial communities, complex mixtures of species interacting with each other, are everywhere on and in our bodies, in soil and water, even, in clouds and volcanic hot-springs. The researchers focused on microbial communities producing methane because the amount of gas produced indicates how healthy the community is. This allowed a rare insight on the mechanisms, that govern the formation of such communities. The communities came from a variety of sources, including, biogas plants and cow dung.

The results, may have, implications beyond the biogas sector and if the same principle applies elsewhere it could be implemented in faecal transplants or soil probiotics, increasing crop yields. “The more communities we added to the mix, the higher the biogas yield.” said Dr Pawel Sierocinski, of the Environment and Sustainability Institute on the University of Exeter’s Penryn Campus in Cornwall.

“This shows that selection can operate on a whole community, rather than simply on single species or genes. We looked at the communities’ species composition after the experiment, by analysing their DNA and saw that the mixes were very similar to the healthiest single community not only in their methane production, but also, in terms of which microbes can be found in them.

Some organisms from weaker-performing communities, also, became part of the thriving mix. These bacterial immigrants made the mixes have a higher biodiversity, making such communities more efficient and stable. There are complex feeding chains within these communities, as some micro-organisms live off by-products of others.

Our research shows that microbes from well-performing communities are capable of pulling their fellow bacteria with them in something, we dubbed, ‘bacterial nepotism’. We were, also,  surprised how reproducible our findings were, our colleagues in France got the same results from totally independent tests, using a similar model.

For the public, there are many potential practical implications if future research confirms that the same rules stand for other types of communities. Learning such rules, that guide community behaviour allows us to harness them. For example, if our gut flora behaves in a similar way as methane-producing communities, we could use that to our benefit. We could mend the poor-performing communities by giving them a boost from the ones, that function well.”

The research, funded by the Biotechnology and Biological Sciences Research Council, was carried out by the universities of Exeter and Warwick, the Earlham Institute and the French National Institute for Agricultural Research. ω.

The Paper: Published in the journal Current Biology: A single community dominates structure and function of a mixture of multiple methanogenic communities

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

||  Readmore  ||

|| ‽: 301017  ||

||    Up   ||









Study Offers New Insights as to How Bacteria Form Flocks


|| September 19: 2017: University of Edinburgh News || ά. Scientists have shed light on how tiny organisms flock together, even, when they are present in very low numbers. The findings could provide fresh insights into how some infectious diseases are spread. It was previously known that certain swimming bacteria, including, E. coli and Salmonella, form flocks at high concentrations. In the new study, researchers found that it is only at extremely low concentrations, that bacteria do not ‘feel’ each other’s presence.

Flocking behaviour occurs among many living things, from bacteria to people. However, the process in micro-organisms is poorly understood and it remains unclear as to why they engage in such behaviour, researchers say. Such gatherings arise spontaneously in groups without a clear leader as a result of physical interactions among individuals, previous research suggests. Scientists at Edinburgh found that flocking behaviour in micro-organisms is more complex than was previously thought.

The research team created a computer model and analytic theory to study how single micro-organisms affect each other through backwashes, that each animal creates as it swims.

These flows enable bacteria to sense each other’s presence and interact at very low concentrations. The study, published in the journal Physical Review Letters, was supported by the Engineering and Physical Sciences Research Council, the Swedish Research Council and Intel. It was carried out in co-operation with scientists in France and Sweden.

''Up to now it was thought that the movements of swimming micro-organisms at low concentrations, are random and featureless. Surprisingly, our latest results show measurable signs, that the micro-organisms can interact, even, at very low densities, in a way, which, significantly, affects the physical properties of the environment.'' says Dr Alexander Morozov, School of Physics and Astronomy.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

||   Readmore    || || ‽: 190917  || ||    Up   ||





How to Kill a Bacteria the Smart Way: Take the Electron Supply Away That Feeds It to Grow

Agneta Richter-Dahlfors. Image: Stefan Zimmerman


|| September 09: 2017: Karolinska Institutet News || ά. Conducting plastics found in smartphone screens can be used to trick the metabolism of pathogenic bacteria, report scientists at Karolinska Institutet in the scientific journal NPJ Biofilms and Microbiomes. By adding or removing electrons to and from the plastic surface, bacteria, may be, tricked into growing more or less. The method, may, find widespread use in preventing bacterial infections in hospitals or improve effectiveness in wastewater management.

When bacteria attach to a surface they grow quickly into a thick film, known as, a biofilm. These biofilms frequently occur in our surroundings but are, especially, dangerous in hospitals, where they can cause life threatening infections. Researchers have now aimed to address this problem by producing coatings for medical devices, made from a cheap conducting plastic, called, PEDOT, which is what makes smartphone screens respond to touch. By applying a small voltage, the PEDOT surface was either flooded with electrons or left almost empty, which in turn, affected the growth of Salmonella bacteria.

“When the bacteria land on a surface full of electrons, they cannot replicate.”, explains Principal Investigator Professor Agneta Richter-Dahlfors, at Karolinska Institutet’s Department of Neuroscience and Director of the Swedish Medical Nanoscience Centre. “They have nowhere to deposit their own electrons, which they need to do in order to respire.”

On the other hand, if the bacteria encountered an empty PEDOT surface, the opposite happened, as they grew to a thick biofilm. “With the electrons being continually sucked out of the surface, bacteria could continually deposit their own electrons, giving them the energy they needed to grow quickly.”, says Professor Richter-Dahlfors.

This left the research team in a position where, at the flick of a switch, they could either abolish bacterial growth or let it continue more effectively. This has many implications for both health and industry.

“To begin with, we can coat medical devices with this material to make them more resistant to colonisation by bacteria.” says Professor Richter-Dahlfors. “However, if we look to industries like wastewater management, that need a lot of beneficial biofilms to create clean water, we can produce surfaces, that will promote biofilm production.” she continues.

In the future the research team will work to integrate this technology into devices, that could, one day, be implanted into patients to keep them safe, when undergoing medical procedures or having devices implanted.

The study was financed by the Swedish Research Council, Vinnova, Carl Bennet AB, and the Swedish Medical Nanoscience Centre. ω.

The Paper: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptor: Salvador Gomez-Carretero, Ben Libberton, Mikael Rhen, and Agneta Richter-Dahlfors: NPJ Biofilms and Microbiomes, online 4 September 04, 2017 doi:10.1038/s41522-017-0027-0

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

||  Readmore    || || ‽: 100917  || ||    Up   ||






The First Snapshots of Molecular Propeller of Archaea Pyrococcus Furiosus That Can Run at 100 Degrees Celsius


The 3D view of a Pyrococcus furiosus cell obtained by electron cryo-tomograpy next to the structural model depicting the position of every atom in the archaellum. Image: University of Exeter


|| September 05: 2017: University of Exeter News || ά. Scientists have made a crucial new discovery into how a group of ancient microbes, that can survive in some of the world’s harshest environments, propel themselves forward. An international team of experts, led by Dr Bertram Daum of the University of Exeter’s Living System Institute, have showed the structure of the unique whip-like appendage, found on archaea, which rotates like a propeller to enable these cells to swim.

The structure, called, the archaellum, is used for movement and to allow the microbes to adhere themselves to surfaces, helping them flourish in their current environments and to colonise new ones. The researchers studied a particular type of archaea, Pyrococcus furiosus, which thrive without needing oxygen and at a temperature of 100° C, the boiling point of water. Using advanced electron cryo-microscopy at the Max Planck Institute of Biophysics in Frankfurt, Germany, the research team have visualised this vital, yet, previously, poorly understood propelling motor in three-D and at so far unachieved resolution.

The researchers say that the new research will pave the way for a deeper, molecular understanding of the swimming motion of the archaea. The study is published in scientific journal eLife. Dr Daum, a Research Fellow from the University of Exeter’s College of Engineering, Mathematics and Physical Sciences, said, “The machinery, that drives these micro-organisms can appear strikingly simple but it is extremely difficult to study in depth. This new research has allowed us to create, for the first time, a detailed model of the structure, that propels the archaea, and as such, helps them to thrive and survive in places, that so much of life would perish.

More than that, this could have an incredible impact on synthetic biology and by understanding how archaea move, we are able to provide a new idea for future medical practices. Understanding the molecular propeller in detail could help scientists create motors for minute artificial capsules, small enough to explore inside the human body and help combat infectious diseases or cancer.”

As well as thriving in diverse and often harsh habitats across the world, such as, boiling hot springs, salt lakes or deep sea vents, archaea are, also, found in the human digestive system and have been implicated as playing a role in obesity.

We are really excited about our structure of the archaellum machinery because it has many downstream implications. Not only does it teach us about how life can exist at extreme conditions here on earth, and potentially, elsewhere in the universe, but it, also, provides us with a powerful and versatile tool to create revolutionary technology, that works at the level of molecules.” ω.


Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

||   Readmore     || || ‽: 060917  || ||    Up   ||








What Have You Found in the Lake Jyväsjärvi: Something Stranded But Singly


|| July 23: 2017: University of Jyväskylä News || ά.  Viruses are the most numerous biological entities, where is life there are viruses. Still, only a small fraction of them have been structurally and biochemically characterised. A few years ago, during a laboratory course in University of Jyväskylä a new bacterial virus infecting a Flavobacterium host was isolated from a water sample taken from Lake Jyväsjärvi in Finland.

A more detailed analysis done in collaboration with scientists from Universities of Jyväskylä, Helsinki and Oxford showed the unique characteristics of this virus. The virus, named FLiP, was found to be the first described virus with an icosahedral capsid, internal lipid membrane and a single stranded DNA genome. Without the detailed near-atomic resolution structural analysis the exceptional characteristics of FLiP could have remained unnoticed.

Whereas the virus genome showed limited sequence. similarity to other known viruses, the structure of the viral major capsid protein was strikingly similar to that observed in double stranded DNA viruses of the PRD1–adenovirus lineage.

FLiP is the first ssDNA virus assigned in this lineage. These results suggest that the capsid protein structure could be used to complement the sequence data, when classifying viruses and in detecting their deep evolutionary relationships.

Furthermore, the finding of FLiP exemplifies the importance of detailed characterisation of novel viruses from diverse environments in detail to understand the diversity of the microbial world.

The study was publisher in Proceedings of National Academy of Sciences of the United States of America. ω.

Further information:  Academy Researcher Lotta-Riina Sundberg, tel. 358 40 805 3931, lotta-riina.sundberg at

The Paper: Laanto, E., Mäntynen, S., De Colibus, L., Marjakangas, J., Gillum, A., Stuart, D.I., Ravantti, J.J., Huiskonen, J.T., ja Sundberg, L.-R., 2017. Virus found from a boreal lake links ssDNA and dsDNA viruses. Proceedings of National Academy of Sciences of the United States of America. Doi: 10.1073/pnas.1703834114

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore || ‽: 240717  || Up || 






New Research in New Zealand Shows Potential for the First Gonorrhoea Vaccine


|| July 19: 2017: University of Auckland News || ά. New Zealand-led research has shown a link between the meningococcal group B vaccine:MeNZB, used here between 2004 and 2008 and a reduction in cases of gonorrhoea. The research, led by Dr Helen Petousis-Harris of the University’s Faculty of Medical and Health Sciences, has found exposure to the meningococcal group B vaccine during a New Zealand mass vaccination campaign was associated with a reduced likelihood of contracting gonorrhoea, compared with unvaccinated people.

It is significant because so far efforts to develop a vaccine against gonorrhoea have been unsuccessful despite more than a century of research. But population data suggests there is a decline in gonorrhoea immediately after the use of the outer membrane vesicle:OMV meningococcal group B vaccine in New Zealand, as well as, Cuba and Norway. The need for a gonorrhoea vaccine is now desperate as gonorrhoea has recently developed into a ‘superbug’ with some strains now resistant to all available treatments.

Due to a devastating epidemic of meningococcal disease in New Zealand, approximately, one  million individuals, 81 percent of the population under 20 years, received the MeNZB vaccine, during a mass immunisation programme in 2004-2006. The vaccine was made from the outer membrane:OMV of the meningococcal group B bacteria that was causing the epidemic.

The researchers used data for all people aged 15-30, who had been diagnosed with gonorrhoea or chlamydia or both, at 11 sexual health clinics across New Zealand, and who, were eligible to receive the MeNZB vaccine during the 2004-2006 vaccination programme. The study was a case-control study, that compared people with gonorrhoea to those with a similar disease, Chlamydia, to see if vaccination exposure differed between them.

A total of 14,730 cases and controls were included in the analysis, 1,241 cases of gonorrhoea, 12,487 cases of chlamydia, 1,002 cases of co-infection. Vaccinated individuals were significantly less likely to have gonorrhoea than controls. Taking into account all other factors, such as, ethnicity, deprivation, geographical area and gender, the researchers conclude that having previously received the MeNZB vaccine reduced the incidence of gonorrhoea by approximately 31 percent.

The study has just been published in prestigious journal the Lancet. Dr Petousis-Harris, says, “Our findings provide experimental evidence and a proof of principle that an OMV meningococcal group B vaccine could offer moderate cross-protection against gonorrhoea.

This is the first time a vaccine has shown any protection against gonorrhoea. At the moment, the mechanism behind this immunity is unknown, but our findings could inform future vaccine development for both the meningococcal and gonorrhoea vaccines. It, also, aises the question as to the effect currently available similar vaccines, may have.”

MeNZB was developed to control a meningococcal disease epidemic and is no longer available, but the OMV antigens thought to provoke the immune response to gonorrhoea have been included in the more recently developed 4CMenB vaccine, available in many countries. New Zealand, may, see the availability of this vaccine in the near future, too. It will be important to elucidate the mechanism behind this protection, and also, prove that other OMV vaccines have a similar effect.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore || ‽: 190717  || Up || 







Bacteria: Micro-Flocking



|| July 17: 2017: Lund University News || ά. Many animal species display flocking behaviour, but the fact that micro-organisms do it, too, is not as well known. Researchers, at Lund University in Sweden, have now shown that algae and bacteria form flocks at very low concentrations of individuals, a finding that could increase our future understanding of how the organisms infect their host animals. Flocking behaviour in animals seemingly arises spontaneously in a group of independent individuals without a clear leader.

This behaviour occurs among all types of organisms, from bacteria to people. One hypothesis, therefore, is that there are fundamental principles for flock building, that are not dependent on single individuals. Researchers at Lund University, in co-operation with colleagues from the UK and France, have now found that flocking behaviour among micro-organisms is more advanced than we previously thought.

“Our research is a physical explanatory model of how micro-organisms move. From a biological perspective, it is useful to examine the evolutionary basis for flocking behaviour among bacteria, as the connections can increase our understanding of the course of infectious diseases.” says Joakim Stenhammar, chemistry researcher at Lund University.

When a person or animal swims, they create backwashes or wakes, that others can sense. The researchers have now created a theoretical model, that describes how single micro-organisms communicate with each other via the backwashes, that each organism creates.

The physical principle differs from ordinary backwashes, but these flows enable the bacteria to sense each other’s presence and affect each other at very low concentrations. In light of this, micro-organisms cannot be described as isolated individuals.

It was previously known that certain swimming bacteria, such as E. coli and Salmonella, form flocks at high concentrations. In the new study, Stenhammar and his colleagues have shown that it is only at extremely low concentrations, less than ten per cent of what was previously thought, that bacteria, can be, considered as individuals.

“In contrast to an individual bacterium, flocks can move in a synchronised way over long length scales and several times faster than a single bacterium.” says Joakim Stenhammar.

“Our research adds another piece of the puzzle to our understanding of how flocking behaviour works in biological systems and the model, can be, applied to a large number of swimming micro-organisms.” says Joakim Stenhammar.

Publication: Role of Correlations in the Collective Behavior of Microswimmer Suspensions

Contact: Joakim Stenhammar: Associate Senior Lecturer: Department of Chemistry, Lund University: Tel. +46:0:707 22 61 12: Email: joakim.stenhammar at

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore || ‽: 180717  || Up || 







The Verticillium-Specific Protein VdSCP7 Localises to the Plant Nucleus and Modulates Immunity to Fungal Infections

Figure: A. GFP-tagged VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus,
B. VdSCP7 gene knockout mutant, ∆vdscp7-1 showed enhanced virulence in
cotton host, C. Hypothesis of VdSCP7 activating plant immunity by translocation
from apoplastic space to the nucleus. Image: Professor Guo's group


|| April 18: 2017: Chinese Academy of Sciences News || ά. Verticillium dahliae:V. dahliae is a soil borne fungal pathogen, that infects a broad range of hosts. It is now becoming a major threat to many economically important crops, such as cotton and sunflower. Similar to most filamentous pathogens, V. dahliae secretes effector proteins to overcome plant basal defense for successful host colonisation.

Resistance plants can recognise effector by cognate R proteins to induce a second layer of immunity, known as effector-triggered immunity, ETI, against pathogen infection. However, very few R proteins were found to recognise V. dahliae effectors and trigger ETI. The research group, led by Professor Guo Huishan at State Key Lab of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences:IMCAS, has been working on V. dahliae pathogenesis and crop resistance against wilt diseases for over ten years.

Recently, they discovered a Verticillium-specific protein, namely VdSCP7, that functions as an effector and alters plant susceptibility to fungal and oomycete infection. The study was published in New Phytologist.

VdSCP7 was selected by proteomic analysis of the cultural filtrate from a cotton-isolated V. dahliae strain, V592. The protein contains N-terminal signal peptide and a nuclear localisation signal, that is secreted by V. dahliae and accumulates in the plant nucleus, Figure A. Expression of VdSCP7 in Nicotiana benthamiana induced immune responses such as ROS accumulation, callose deposition and HR.

Interestingly, VdSCP7-expressing N. benthamiana leaves showed resistance to the fungal pathogen Botrytis cinerea but enhanced susceptibility to the oomycete pathogen Phytophthoracapsici.

VdSCP7 gene knockout mutants showed enhanced virulence in cotton host, suggesting that there is a cognate R-gene in cotton that has triggered immunity against Verticillium infection, Figure B.

Researchers proposed a model that VdSCP7 could activate plant immunity by translocation from apoplastic space to the nucleus, Figure C. VdSCP7 is the first discovered nuclear effector in Verticillium species.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore || ‽: 190417  || Up ||




Virologists Show How the Interplay Between CMV and HIV Infection and Seek to Develop Strategies to Eradicate the Latent Viruses

The study was led by led by Professor Chen Zhiwei, Director of the AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of
Medicine and Dr Allen Cheung Ka-loon, Post-doctoral Fellow of the AIDS Institute, Department of Microbiology,
Li Ka Shing Faculty of Medicine at HKU. Images: University of Hong Kong


|| February 22: 2017: University of Hong Kong News || ά. In recent years, breakthroughs in medical treatment of HIV:AIDS greatly extended the survival of infected patients, however, it remains an incurable disease. Previous studies have focused on the depletion of CD4 lymphocytes by human immunodeficiency virus type one:HIV-1 infection but little is known about the infection of CD34 stem cells. The AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong:HKU shows mechanistic interplay of two viruses, human cytomegalovirus:CMV and human immunodeficiency virus in co-infecting:CD34+ stem cells to establish latent reservoirs.

The findings, which show added difficulty in curing HIV-1, have been published recently in Blood Advances of American Society of Hematology. HIV-1 is the causing virus for AIDS. It destroys the white blood cells and impairs the body's immune system, making one susceptible to various opportunistic infections and cancers, which rarely affect healthy individuals. As of September 2016, there are 8,243 cumulative reported HIV cases, where more than 80% are men transmitted mainly through sexual contact. The incidence rate has risen from about 300 cases to more than 700 per year in the last ten years. CMV is a ubiquitous virus that has infected 60-100% of the world’s population.

Although, it remains asymptomatic in healthy individuals, it poses a fatal threat in congenital infection, organ transplant recipients and AIDS patients. CMV undergoes life-long latent infection in CD34 stem cells where HIV-1 can also infect them. Past studies have shown that progression to AIDS is faster in those HIV patients already infected with CMV, suggesting that CMV influences HIV-1. But there has been no research to study the interplay of these two viruses in CD34 stem cells.

The research team of the AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, HKU has initiated this study since 2013. They established a cell culture model using and expanding CD34 stem cells from blood and successfully revealed that HIV-1 and CMV can infect the same cell. These CD34 cells naturally reside in the bone marrow where they can hide from the immune system and antiviral drugs.

In addition, the research team found that pre-existing latent CMV assists HIV-1 infection of CD34 stem cells by 'opening a wider door' for the virus. CMV does this by increasing the co-receptors used by HIV-1 to gain entry into the cell as well as decreasing restriction factors. On the other hand, HIV-1 assists CMV by reverting the CD34 stem cell to a more primitive state to achieve a state of quiescent to ensure long-term survival.

Professor Chen Zhiwei, Director of the AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, HKU says, “The HKU research team is the first group to show in detail how HIV-1 and CMV co-operate in co-infecting CD34+ progenitor cells. The breakthrough findings highlight the importance to understand how both viruses interplay and what we need to consider to develop strategy to eradicate the latent viruses. With recent international focus to purge HIV-1 out of latency in patients, reservoirs of other viruses and niche cell types must be considered.”

About the research team: This research was conducted by the team led by Professor Chen Zhiwei, Director of the AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, HKU; and Dr Allen Cheung Ka-loon, Post-doctoral Fellow of the AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, HKU. ω.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore  || ‽: 230217  || Up ||



Research Teams Hone in on Zika Vaccines: But Challenges Remain

In Recife, Brazil, a 15-year-old mother holds her four-month-old baby born with microcephaly, caused by the Zika virus. Photo: UNICEF/Ueslei Marcelino

|| February 21: 2017: Beth Israel Deaconess Medical Centre News || ά. In less than one year, researchers have developed multiple vaccine platforms that provide robust protection against Zika virus challenge in animal models. Multiple phase one clinical trials have been initiated by government, industry and academic research institutions, including Beth Israel Deaconess Medical Centre. Research challenges remain, including the high bar for safety and efficacy needed to protect pregnant women and their fetuses from congenital Zika syndrome, which can cause devastating neurological defects in babies of infected mothers.

As public health officials warn that spring’s warmer temperatures may herald another increase of Zika virus infections in the Caribbean and North and South America, researchers around the world are racing to develop safe and effective measures to prevent the disease. In a review paper published today in the journal Immunity, a group of leading vaccine scientists, including Dan H. Barouch, MD, PhD, of Beth Israel Deaconess Medical Centre:BIDMC, outline advances in the hunt for a Zika vaccine and the challenges that still lie ahead.

“The pace of preclinical and early clinical development for Zika vaccines is unprecedented.” said Barouch, corresponding Author and Director of the Centre for Virology and Vaccine Research at BIDMC. “In less than a year, our group and others have demonstrated that multiple vaccine platforms can provide robust protection against Zika virus challenge in animal models. However, unique challenges will need to be addressed in the clinical development of a Zika vaccine. ”

The recent outbreak of the Zika virus in the Americas began in Brazil nearly two years ago. By February 2016, the World Health Organisation had declared the epidemic a global public health emergency, based largely on the virus’ newly-established link to microcephaly and other major birth defects in babies born to infected mothers. The virus has also been associated with the neurologic disorder Guillain-Barré syndrome in adults.

In a previously published paper, Barouch and colleagues, including Colonel Nelson L. Michael, MD, PhD, Director of the Military HIV Research Programme at the Walter Reed Army Institute of Research:WRAIR and Stephen Thomas, MD, Upstate Medical University, State University of New York, demonstrated that three different vaccine candidates provided robust protection against Zika virus in both mice and rhesus monkeys. Several human clinical trials began last fall at test sites including BIDMC, WRAIR and National Institute of Allergy and Infectious Diseases affiliated clinical trial sites.

“The rapid advancement of Zika vaccine candidates into clinical trials reflects the uniquely focused and effective collaboration among scientists in the field to address this important global problem.” said Barouch. Despite the accelerated pace of research, much remains unknown about the virus, raising unique challenges in developing a vaccine. Safety considerations are especially critical, given that the target population for a Zika vaccine would likely include men and women of childbearing age.

Zika is a member of the flavivirus family of viruses, which includes West Nile virus, yellow fever virus, and dengue viruses, for which successful vaccines have been developed. Studies suggest that Zika-induced antibody responses may also cross-react with other flaviviruses, particularly dengue virus. Whether or not this antibody cross-reactivity may have clinical consequences is another consideration for Zika vaccines and requires further study.

Co-authors include: Stephen J. Thomas, MD, Upstate Medical University, State University of New York, Syracuse; and Colonel Nelson L. Michael, MD, PhD, Director, Military HIV Research Program, at Walter Reed Army Institute of Research:WRAIR.

The review’s authors acknowledge support from the U.S. Military Research and Material Command and the U.S. Military HIV Research Program; the National Institutes of Health; and the Ragon Institute of MGH, MIT, and Harvard.

About Beth Israel Deaconess Medical Centre: Beth Israel Deaconess Medical Centre is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding. BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, MetroWest Medical Centre, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Centre and Hebrew Rehabilitation Centre and is a research partner of Dana-Farber:Harvard Cancer Centre and the Jackson Laboratory. ω.

Whatever Your Field of Work and Wherever in the World You are, Please, Make a Choice to Do All You Can to Seek and Demand the End of Death Penalty For It is Your Business What is Done in Your Name. The Law That Makes Humans Take Part in Taking Human Lives and That Permits and Kills Human Lives is No Law. It is the Rule of the Jungle Where Law Does Not Exist. The Humanion

|| Readmore  || ‽: 220217  || Up ||



Marine Bacteria Produce Molecule with Links to the Climate

Microscope images showing two species of algae which swim using tiny appendages known
as flagella. Image: Kirsty Y. Wan:Raymond E. Goldstein

|| February 19: 2017: University of East Anglia News || ά. Scientists from the University of East Anglia and Ocean University China have discovered that tiny marine bacteria can synthesise one of the Earth’s most abundant sulfur molecules, which affects atmospheric chemistry and potentially climate. This molecule, dimethylsulfoniopropionate:DMSP is an important nutrient for marine microorganisms and is the major precursor for the climate-cooling gas, dimethyl sulfide:DMS.

DMS, produced when microorganisms break down DMSP, is thought to have a role in regulating the climate by increasing cloud droplets that in turn reduce the amount of sunlight reaching the ocean’s surface. These same clouds are vital in the movement of large amounts of sulfur from oceans to land, making the production of DMSP and DMS a critical step in the global sulfur cycle. It was previously widely thought that only eukaryotes, ‘higher’ organisms with complex cells, such as seaweeds and phytoplankton, produced DMSP.

However, researchers have discovered that many marine bacteria also produce this sulfur compound and have identified the key gene in the process. “Our finding that DMSP is produced by many marine bacteria could mean that scientists have been significantly underestimating both the production of this molecule and the effects it is having in the environment.” said Dr Jonathan Todd from UEA’s School of Biological Sciences.

“Since these bacteria do not require sunlight for growth, the production of DMSP need not be confined to the surface ocean waters which receive the most light energy, as was thought to be the case.”

Dr Andrew Curson from UEA’s School of Biological Sciences said, “The identification of the key gene for DMSP synthesis in these bacteria will allow scientists to predict which bacteria are producing DMSP and assess their contribution to global production of this environmentally important molecule.”

Ana Bermejo Martinez, a UEA PhD student involved in this research, said, “Using DMSP-producing marine bacteria as model organisms will also help us to understand how and why the synthesis of this key molecule is regulated in different environments.”

Dr Zhang from OUC’s College of Marine Life Sciences said, “These bacteria, isolated during a research cruise in the East China Sea, have led to a ground-breaking discovery in the field. This work shows that marine bacteria are likely very important contributors to global DMSP and DMS production.”

This work was carried out as part of a collaboration between the University of East Anglia, and Ocean University China and work at UEA was funded by the UK Natural Environment Research Council. ω.

The paper ‘Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process’ is published in the scientific journal Nature Microbiology.